Remarks on compact quasi-Einstein manifolds with boundary

نویسندگان

چکیده

In this paper, we prove that a compact quasi-Einstein manifold $(M^n,\,g,\,u)$ of dimension $n\geq 4$ with boundary $\partial M,$ nonnegative sectional curvature and zero radial Weyl tensor is either isometric, up to scaling, the standard hemisphere $\Bbb {S}^n_+,$ or $g=dt^{2}+\psi ^{2}(t)g_{L}$ $u=u(t),$ where $g_{L}$ Einstein Ricci curvature. A similar classification result obtained by assuming fourth-order vanishing condition on tensor. Moreover, new example presented in order justify our assumptions. addition, case $n=3$ also discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi Einstein manifolds

The object of the present paper is to study some properties of a quasi Einstein manifold. A non-trivial concrete example of a quasi Einstein manifold is also given.

متن کامل

ON N(k)-QUASI EINSTEIN MANIFOLDS

N(k)-quasi Einstein manifolds are introduced and studied.

متن کامل

Harmonic bundles on quasi-compact Kähler manifolds

On Kähler manifolds, there exist deep relationships between holomorphic and harmonic objects, between algebraic data and analytic variational principles. For example, through the work of Narasimhan-Seshadri [NS], Donaldson [D1, D2, D3] and Uhlenbeck-Yau [UY] we know that an irreducible holomorphic bundle on a compact Kähler manifold X possesses a Hermite-Einstein (H-E) metric if and only if it ...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Erratum To: Extension of Symmetries on Einstein Manifolds with Boundary

In this note, we point out and correct an error in the proof of Theorem 1.1 in [1]. All of the main results of [1] are correct as stated but the proofs require modification. We use below the same notation as in [1]. ∂M (δ * Y)(N, X) = 0, cannot always be simultaneously enforced with the slice property [1, (5.7)], i.e.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15708